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GULYAEV-BLEUSTEIN WAVES IN PIEZOELECTRIC MEDIA* 

B.A. KUDRYAVTSEV and V.Z. PARTON 

A solution is given for the problem of the excitation of Gulyaev-Bleustein 
shear surface acoustic waves by two ribbon electrodes of finite length on 
the surface of a semi-infinite crystal of hexagonal class 6mm. The 
electron charge distribution density functions are determined on the 
electrodes as are also the shear surface-wave characteristics. 

The formulation of the selfconsistent problem of the excitation of 
surface waves in a piezoelectric medium by a system of metal electrodes 
is elucidated in general form in /l/, and the method of solving it is 
based on using Green's matrix for the linear charge on the piezoelectric 
surface. By using Green's matrix, Fredholm singular integral equations 
of the first kind were obtained in /2, 3/ for the unknown electric-charge 
distribution density functions on the electrodes. The integral Eqs./2, 3/ 
allow of an analytic solution when investigating the excitation of shear 
waves in a hexagonal crystal by a system of narrow electrodes. 

1. We consider an elastic semi-infinite crystal of the hexagonal class 6mm that occupies 
the domain y< 0, 1 z I< 00 (z is the hexagonal axis) (figure). Two metal electrodes of 
identical width and infinite length in the direction of the z axis are deposited on the 
boundary between the half-space and the vacuum (y = 0), and an alternating voltage fVOeiWt 
is applied thereto. In this case pure shear electroelastic waves with just one displacement 
component wr O(w = w(s,y),u = 0,~ = 0) exist within the half-space y < 0. 

The equations of state for a 6mm crystal have the form /4/ 
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Taking (l.l), into 
components of the shear 
equations of motion and 

(E, = --acpi&c, Ey = --agic?y) 

Here c44 E is the electric modulus, elj is the piezoelectric 

constant, %lS is the permittivity, and r+ is the electric field 
governing the components of the electric field vector for ~(0. 

account, we obtain the fundamental equations for the amplitude 
acoustoelectric waves (the time factor &Of is omitted) from the 
electrostatics, where x2 is the electromechanical coupling coefficient 

r% f k2w = 0, ‘?@ = 0 (1.2) 

We have for the vacuum region with permittivity e0 

v*vo = 0 (1.3) 
where q0 is the electric potential for y> 0. 

Taking account of the symmetry of the electroelastic state, 
of (1.21, (1.3) in the form 

we can represent the solution 

1L’ (x1 Y) = <a>* 0 (2, y) = (b), y < 0 
‘co (G ?A) = <blJ, y > 0 

(1.4) 
(1.5) 

Here 

a = a (E, 5, y) = A (E) evYt'-t.,in Es, . b = b (E, I, y)= 
B (E) eiv sin Es 

CC 

ho = b,(E, 5, y) = Bo(Q&Y sin &r, 
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we then obtain for the stress ryr, the electric potential 9, 
electric induction vector for y< 0, 

andthe component D, of the 
as well as for the normal component D,L~J of the induction 

vector for y> 0 

5"l (A y) = c*4s (1 + ~*)<1'5'--a) + e&b> (I .6) 

‘p (x, !4;= -$ (a) ‘r @) 

D, (~3 y) = -En’<&), D,(O) (2, y) = Eo <&,) (1.7) 

The following boundary conditions must be satisfied on the free surface of the crystal 
y=o: 

ry, (5, 0) = 0, Y (5, 0) = To (2, Oh 0 Q 5 < 00 
'P (2, 0) = 'PO (2, 0) = Vo, a < x < b 

(1.8) 
(1.9) 

D, (2, 0) - DJ”) (5, 0) = 0, 0 < LC< a, z > b 

Substituting the relationships (1.5) and (1.6) into condition (1.8) we obtain 

Taking these into account, we obtain three integral equations in the function B,(t)= B(E)F(i) 
from conditions (1.9) 

TB,(Q[l-- ,,,$$F(ij]sinE=di.=Vs. a<x<b (1.11) 
i; 

a 

- CO (1 + PII) s EB, (5) sin Ex dg = 0, O,<X<U, X>b 
0 

Here 

F (5) = 1 - - 

The problem therefore reduces to determining the function B,(t) from the solution of 
the three integral Eq.(i.ll!. 

We note that the left side of the second equation in (1.11) for a<x< b is the unknown 
electric charge density distribution function q(z) on the electrode, and, therefore by inverting 
the equation 

a<x<b, 
O,<x<a, z >.. F, 

we obtain 

(1.12) 

Now using relationships (1.10) and (1.13), we can write the formula for the displacement 
and the electric potential in the piezoelectric domain. The integrands in these formulas have 

a simple pole 5 = 5, = k (1 - B*)-‘1~ on the axis of integration since F(&,) = 0 for & = k(1 - 
6)-‘% The existence of this pole is due to the fact that acoustoelectric wave damping is not 
taken into account in this problem. If wave damping is taken into account, we should set 
k = k’ - i k” (k” > 0) and then E,, = E_,' - i&” (go” > 0). Therefore, by extracting the contribution 
from the pole f-50 the path of integration must be selected so that this pole is bypassed 
from above. Performing the necessary calculations, we obtain (the integrals are understood 

in the principal-value sense) 

s6FnQ (50) .YYe'-k' i <inEo,_ 
+F' (&)J,'-m - - 

(1.14) 
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The last components in (1.14) correspond to Gulyaev-Bleustein surface waves are propagate 
in the positive and negative directions of the X-axis. In particular, for a surface wave 

propagating in the positive x-direction, expressions are obtained from (1.14) for the displace- 
ment and electric potential that differ by the factor --'/,exp Ii (ot - &,x)1 instead of isin &,x 

from the last terms in (1.14). 0n the basis of these expressions, we can write formulas for 
the stress and electric induction vector components in the surface wave 

ON_ t, -- 
niell 

&l(l +Bll) L 
(1 + x*) 

(1 -i %I) ,r @ 
f&Z _ (1.15) 

ebu r' 1 Q (Ed e'(O'-&) 
p+- ne15 w - 2eo(ls_P11) [eY V_&Y] $.$f+e~(~Wod 
D(@ = _ iD""'= __ _ niFll QKo,e”~ 

I Y 2 (1 + Pll) F’ (50) 
el(OX&) 

Expressions (1.14) and (1.15) now enable us to determine the flux density vector of the 
energy transportable by the Gulyaev-Bleustein wave from the electrode emitter. The total 
energy flux density is the sum of the flux densities of the elastic energy Pk8 and the 
electromagnetic energy P, E (in the quasistatic approximation /l/J 

For monochromatic plane waves (with a time factor @at), the quantities Pk’ and PkE can 
be averaged over the period of the vibrations. Then we find the components P,, P, of the 
energy flux density vector for a shear surface wave (the asterisk denotes the complex conjugate 
quantity) 

P,=$-I~[T~~~---_*D~], pv = % Im [T~;w - ‘p*D,] (1.16) 

Substituting the amplitude values of the corresponding quantities from (1.14) and (1.15) 
into (1.16), we obtain 

(1.17) 

2. We now turn to the solution of the three integral equations (l.ll), which enables us 
to determine the electric-charge distribution density function on the electrode p(z) and the 
quantity Q(&,) in (1.14), (1.15), and (1.17). We represent the function q(X) in the form of 
a series (Z',(z) are Chebyshev polynomials of the first kind) 

We find from (1.12) 

Introducing a change of variable of intergration in (2.2) and taking account of the 
relationship between Chebyshev polynomials and Bessel functions /5/, we obtain 

(2.1) 

(2.3) 

S,(Eq+ {[ 1 - (- I)“] (- lp-l)‘* cos (E qq + 

[lT(-l)n](-l),~sin(~~)~ 

Now substituting the first equation of (2.3) into (1.11), we make the change of variable 

b-a b-to s=-----x1+~_(1~1I<1) 2 

and we use the expansion 

E,=‘/z, En,= 1 (n? = 1. 2, . . .) 
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We consequently obtain an infinite system of algebraic equations to determine the 
coefficients a, of the expansion (2.1) 

Here 

(Xl) 

A new variable of integration n = E(b - a)/2 is introduced to transform the integrals 
%m* Km 

Since 

(n = 0, 1,2, . * .) 

then the values of the following integrals 

must be found to evaluate the coefficients of o,, 
The integrals (2.63 can be converted to a form convenient for calculations if the Neumann 

formula /5/ is used 

as well as values of the discontinuous integrals 

In particular, for n + m>O 

Transforming the other integrals of (2.6) in an analogous manner, we obtain 

(2.5) 

(2.8) 
0 

We note that for narrow electrodes (a<l) it follows from (2.7) and (2.8) that 
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000 = 2111 (4/a), o,, z 6,,ln (n + m > 0) 
I* evaluating the integrals (2.7) it must be taken into account that the integrand has a 

simple pole at the point qo =kr/l/l-- Bypassing this pole from above, we obtain (the second 

integral is understood in the principal-value sense) 

(2.9 

For piezoelectric materials of the hexagonal class 6mm the permittivity Ells is 

considerably greater than .sO; consequently, the parameter 6 is small, and therefore, (2.10) 
can be used to evaluate the coefficients y",,, 

Ynm = Ynm' - %n" (2.10) 

v...=5~~(k’chE)J,(klchE)Sn(gche)s,(~chE!dE 

,..=‘s o J,(klsincC)J,(klsincp)S,(~sin~)S,(~sin~)d~ 

(the change in the variable of integration n = k,ch 5,~ = k,sinm) was made). 
Therefore, the solution of the problem is reduced to an infinite system of linear algebraic 

equations (2.4). The fundamental parameter Q(sO), governing the Gulyaev-Bleustein surface- 
wave characteristic, is here expressed in terms of the solution of this system by means of the 
formula 

(2.11) 

An an illustration, an electronic computer claculation of the quantity 3= 103Q(50)/(2~0(I + 
r,,) rJO) was performed for the piezoelectric material CdS with the characteristics /4/ ei5= -0.21 

C/m2, ~~~3: = 8.10-I1 F/m, c,,s = 1.49.10m N/m2, x* = o.o3i, 6 = 3.5i.1u-3. 
Values of g calculated for certain values of k, and a are represented below, after 

truncating the infinite system of algebraicEqs.(2.4) and replacing it by a system of four 
equations 

c1 0.2 0.4 0.6 0.8 
D (k, = 2) 23.2--0.5291 11G-4.16; --89.5+-5.67i -256 + 10.81 
Q (k, = 4) 123-2.131 -94.3+ 1.25i 75.9 - 0.1091 97.4--1.471 

A numerical analysis on a computer showed that when the number of equations increased 
above four, the refinement in the values of F was negligible. 

1. 
2. 

3. 

4. 

5. 

The authors are grateful to G.P. Nikishkov for performing the computations. 
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